Embedded Actors — Towards Distributed Programming in the IoT

Raphael Hiesgen, Dominik Charousset, Thomas C. Schmidt

HAW Hamburg

raphael.hiesgen@haw-hamburg.de

September 2014, ICCE-Berlin

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Agenda

- **1** The Internet of Things (IoT)
- 2 The Actor Model
- **3** Communication in the IoT
- 4 Messaging Architecture
- 5 Evaluation
- 6 Conclusion & Outlook

The Internet of Things (IoT)

Characteristics

- Cooperatively process complex duties
- Dependent on machine-to-machine communication
- Connected to the Internet
- Implemented with networking standards
- Often constrained environment
- Developing for the IoT
 - Fall back to low-level programming
 - Hand-crafted network code
 - Barely portable code
- \Rightarrow Raise the level of abstraction through the actor model

1 The Internet of Things (IoT)

2 The Actor Model

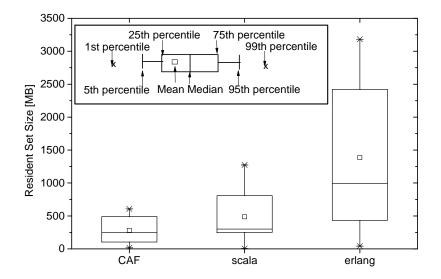
3 Communication in the IoT

- Messaging Architecture
- 5 Evaluation
- 6 Conclusion & Outlook

The Actor Model

- Isolated, concurrent software entities: actors
- Network-transparent message passing
- Divide & conquer via "spawn"
- Strong, hierarchical failure model
- Re-deployment at runtime

Limitations


- Actors not yet established in the native programming domain
 - Need to broaden range of applications
 - Deploy actors in performance-critical systems
- Actors not available for embedded systems
 - Why not model the "Internet of Things" as network of actors?
 - HW platform should not dictate programming model

The C++ Actor Framework

- The C++ Actor Framework (CAF) is an C++11 actor system
- Previously named libcppa
- Efficient program execution
 - Low memory footprint
 - Fast, lock-free mailbox implementation
- Targets both high-end and low-end computing
 - Multi-core & many-node systems
 - Embedded HW, e.g., running **RIOT**¹

¹http://www.riot-os.org

Memory Usage

The Internet of Things (IoT)

2 The Actor Model

3 Communication in the IoT

- 4 Messaging Architecture
- 5 Evaluation
- 6 Conclusion & Outlook

Communication in the IoT

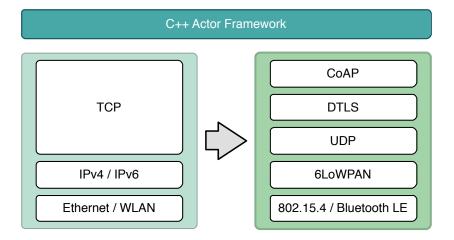
- Loosely coupled
 - Unreliable links
 - Infrastructure failure
- Challenges
 - Error propagation for non-hierarchical systems
 - Secure and authenticated connectivity
- Multiple open standards available to meet these challenges

Standards for the IoT

- Bluetooth low energy
 - Supported by all major OSs
- IEEE 802.15.4
 - WPAN for embedded devices
 - 127 bytes frame size
- IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)
 - IPv6 compatibility
 - Header compression
- UDP / Datagram Transport Layer Security (DTLS)
 - Features of TLS with datagrams
 - Reordering, retransmission and fragmentation for the handshake
- Constrained Application Protocol (CoAP)
 - Request-response model adapted from HTTP
 - Works asynchronously over datagram protocols
 - Offers reliability through Confirmable messages (CON)

Agenda

1 The Internet of Things (IoT)


2 The Actor Model

3 Communication in the IoT

- 4 Messaging Architecture
- 5 Evaluation

6 Conclusion & Outlook

CAF Network Stack

Messaging Architecture Between Actors

Map CoAP messages to CAF

Reliability (CON) \rightarrow synchronous messages

- Unreliability (NON) → asynchronous messages
- Handle small frame sizes
 - Compress meta-information to slim down headers
 - Type-exchange & annotation introduces more state
 - Fragmentation on the application layer (CoAP block messages)
- Concept for error-propagation
 - No longer connection oriented
 - Based on asynchronous transactions (CoAP)
 - Take unreliable messages into account

Agenda

1 The Internet of Things (IoT)

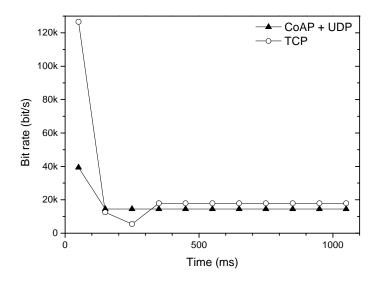
2 The Actor Model

3 Communication in the IoT

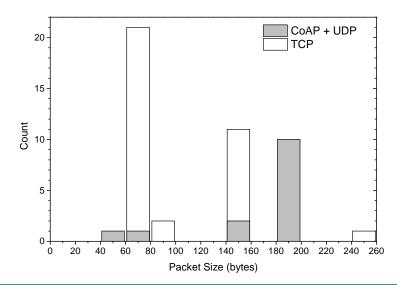
4 Messaging Architecture

5 Evaluation

6 Conclusion & Outlook


Packet Flow Evaluation

Proof-of-concept implementation


- Network stack composed of Ethernet, UDP and CoAP
- Based on libcoap²
- Bitrate & message count compared to TCP based impl.
- Raspberry Pi sends 10 bytes to a desktop PC every 100 ms
 - Characteristic scenario for sensor nodes
- Trace network traffic (handshakes, ACKs, messages, ...)

²http://libcoap.sourceforge.net

Packet Flow

Packet Size Distribution

Raphael Hiesgen

Agenda

- **1** The Internet of Things (IoT)
- 2 The Actor Model
- 3 Communication in the IoT
- Messaging Architecture
- 5 Evaluation

6 Conclusion & Outlook

Conclusion & Outlook

Development for the IoT requires specialized knowledge

- Network communication & synchronization
- Port software to different hardware
- The actor model abstracts over distributed systems
- Adjusted the CAF network stack to the IoT
- Proof-of-concept with first measurements
- Future work
 - Concept for error-propagation
 - Additional CoAP drafts (CoCoA, block messages, ...)
 - Evaluation of packet loss, message sizes
 - Adaption to RIOT

Thank you for your attention!

Website: http://actor-framework.org

Sources: https://github.com/actor-framework

iNET working group: http://inet.cpt.haw-hamburg.de